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Abstract
In discrete mechanics, difference equations describe the fundamental physical
laws and exhibit many geometric properties. Can these equations be obtained
in a geometric way? Using some techniques in exterior difference systems,
we investigate the discrete variational problem. As an application, we
give a positive answer to the above question for the discrete Newton’s,
Euler–Lagrange, and Hamilton’s equations.
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Mathematics Subject Classification: 52C99, 81T75, 03G10

1. Introduction

In recent years, there has been a substantial growth of interest in discrete mechanics [2–12]. In
this renascent field, difference equations describe the fundamental physical laws and exhibit
many geometric properties such as the desirable symmetry and conservation laws. It should
be an interesting problem to deduce these equations in a geometric way. In the continuous
case, it is well known that utilizing techniques from exterior differential systems such as the
derived flag and prolongation allows a systematic treatment of the variational principles in
greater generality than customary and sheds new light on even the classical Lagrange problem
[1]. Naturally, we consider how to apply the techniques in discrete differential geometry and
exterior difference systems [12–17] to the discrete variations in discrete mechanics.

• Using some techniques in exterior difference systems, we set up the problem of the
discrete variation on a regular lattice, deduce the discrete variational equations and obtain
the discrete Euler–Lagrange and Newton’s equations in a geometric way. (Section 3).

• By discrete variational equations, we obtain the discrete Hamilton’s equations and
Noether’s theorem, which is equivalent to discrete Euler–Lagrange equations under the
discrete Legendre transform. (Section 4).

* This paper is supported partially by NSFC 10471143 and NKBRSF 2004CB318001 of China.
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• If the variable of variation is continuous, the equations and transform here fit in the
framework developed by HY Guo, K Wu et al [12]. The discrete Euler–Lagrange
equations and Noether’s theorem here also fit in the framework developed by Marsden
and West et al [10].

The authors wishes to thank Professors HY Guo and K Wu for a great help for this paper.
In fact the inspiration of this paper comes from their revelatory and pivotal suggestions and
creative and essential works.

2. Preliminaries

In this section, we recall some concepts in exterior difference systems [10, 12–17], which are
used in this paper.

2.1. Exterior difference operator

Consider a regular lattice Zm with coordinates {x1, . . . , xm}, where Z is a ring of integers. The
discrete tangent space at the node p ∈ Zm is

TpZm := span{�i |p, i = 1, . . . , m},
where �i is a difference operator in the direct of xi , such that

�ig(x1, . . . , xm) = Eig(x1, . . . , xm) − g(x1, . . . , xm),

where

Eig(x1, . . . , xm) = g(x1, . . . , xi + 1, . . . , xm),

and g is a R-valued function on Zm and R is a field of real numbers.
The discrete cotangent space at p is

T ∗
p Zm := span{dDxi |p, i = 1, . . . , m},

where dDxi satisfies

〈dDxi,�j 〉D := �j(x
i) = δi

j .

The discrete tangent and cotangent bundles over Zm are

T Zm :=
⋃

p∈Zm

TpZm, T ∗Zm :=
⋃

p∈Zm

T ∗
p Zm,

respectively. Sections on T Zm and T ∗Zm are called discrete tangent vector fields and
difference 1-forms, respectively.

As the differential case, we can construct the exterior difference form algebra [12]

�∗ = ⊕n∈Z�n,

where �n is a set of difference n-forms, generated by

hdDxj1 ∧ · · · ∧ dDxjn, j1, . . . , jn ∈ 1, . . . , m,

where h is the R-valued function on Zm,

dDxih = EihdDxi, dDxi ∧ dDxj = −dDxj ∧ dDxi.

The exterior difference operator dD : �k → �k+1 is defined as

dDw =
m∑

i=1

�ihdDxi ∧ dDxj1 ∧ · · · ∧ dDxjk ,

where w = hdDxj1 ∧ · · · ∧ dDxjk . The dD satisfies the Leibnitz law and d2
D = 0 [12].
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2.2. Exterior difference systems

Let (α, π,Zm) be a discrete vector bundle, i.e. α = Zm × Rn and π(α) = Zm. Suppose xi

and uj are the coordinates on the regular lattices Zm and Rn, respectively. Consider section
f :

ui = f i(x1, . . . , xm), 1 � i � n.

Define the map f ∗ : ∧T ∗f (Zm) → ∧T ∗Zm as follows:

f ∗(h(u1, . . . , un)dDui1) := h ◦ f (x1, . . . , xm)dD(ui1 ◦ f ),

f ∗(h(u1, . . . , un)dDui1 ∧ · · · ∧ dDuir ) := h ◦ f (x1, . . . , xm)f ∗dDui1 ∧ · · · ∧ f ∗dDuir .

f ∗ is linear map and commutes with ∧ and dD , called the discrete cotangent map of f [17].

Definition 2.1. Let (α, π,Zm) be a discrete vector bundle and any section on Zm has the
coordinate expression

ui = ui(x1, . . . , xm), 1 � i � n.

Let �∗ = ⊕k∈Z�k , where �k is a set of difference k-forms, generated by any k elements in
{dDx1, . . . , dDxm, dDu1, . . . , dDun} multiply by ∧, with coefficients of R-valued function on
Zm.

(1) A subring of I ⊂ �∗ is called a right ideal, if
(a) α ∈ I implies α ∧ β ∈ I for all β ∈ �∗;
(b) α ∈ I implies that all its components in �∗ are contained in I.

(2) An exterior difference system is given by a right ideal I ⊂ �∗ that is closed under dD .
(3) An integral lattice of the system is given by a section f : Zm → Zm × Rn such that

f ∗α = 0 for all α ∈ I .

We note that the exterior difference system used here is a local system. This system can include
all the local ordinary and partial difference equations on a regular lattice, if introducing the
discrete jet bundle on the regular lattice.

Definition 2.2. Let (α, π,Zm) = {x1, . . . , xm, u1, . . . , un} be a discrete vector bundle and
�k

i1···ik = �i1 · · ·�ik . The discrete k-jet bundle of α is a discrete vector bundle with coordinates{
xi, uj ,�iu

j , . . . ,�k
i1···ik u

j
}
, 1 � i, i1, . . . , ik � m, 1 � j � n,

denoted by J k
Dα.

Example 2.3. Consider the second-order difference equations in the discrete vector bundle
Z × R = {x, y},

�2
xy = F(x, y,�xy).

It can be written as
dDy − ẏdDx = 0

dDẏ − F(x, y, ẏ)dDx = 0

in J 1
D(Z × R) = {x, y, ẏ}, ẏ = �xy.
Consider the partial difference equation on Zn × R = {x1, , . . . , xn, z},

F(xi, z,�iz) = 0, 1 � i � n.

Letting pi := �iz, it can be written as

F(xi, z, pi) = 0

dDz − pidDxi = 0,

in J 1
D(Zn × R) = {x1, . . . , xn, z, p1, . . . , pn}.
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2.3. Pairing formula

Consider discrete vector fields and difference 1-forms on Zm = {x1, . . . , xm}:
vj = akj �kj

, v∗i = fki
dDxki , 1 � i, j, ki, kj � m.

The pairing formula of ∧T Zm and ∧T ∗Zm is

〈v∗1 ∧ · · · ∧ v∗p, v1 ∧ · · · ∧ vp〉D := fi1Ei1fi2 · · · Ei1+···+ip−1fip

×
(∑

σ

εδ
i1
σj1

· · · δip
σjp

)
aj1Ej1a

j2 · · ·Ej1+···+jp−1a
jp ,

where

ε =
{

1, σ is even arrange

−1, σ is odd arrange,
Ej1+···+jp−1 = Ej1 ◦ · · · ◦ Ejp−1 .

For example, if p = 2, then

〈fi1dDxi1 ∧ fi2dDxi2 , aj1�j1 ∧ aj2�j2〉D = fi1Ei1fi2a
i1Ei1a

i2 − fi1Ei1fi2a
i2Ei2a

i1 .

Now we can define the discrete tangent map f∗ : ∧T Zm → ∧Tf (Zm) as follows:〈
hdDui1 ∧ · · · ∧ dDuir , f∗

(
k�α1 ∧ · · · ∧ �αr

)〉
D

:= 〈f ∗(hdDui1 ∧ · · · ∧ dDuir ), k�α1 ∧ · · · ∧ �αr
〉D.

In the similar way as Beauce et al did [13], we can define the discrete contract operator
iY :

〈iY w,X1 ∧ · · · ∧ Xr−1〉D := 〈w,X1 ∧ · · · ∧ Xr−1 ∧ Y 〉D,

where Y = Y i�i ∈ T Zm, and discrete Lie derivative operator using the Cartan formula

LXω := iXdDω + dDiXω.

More information about these or the similar operators can be found in [10, 12–17].

3. Discrete variational equations

In this section, we investigate the application of exterior difference systems to discrete
variations. At first, we set up the problem of the discrete variation using the language of
exterior difference systems.

3.1. Discrete variational problem

We consider an exterior difference system I on the discrete vector bundle Z × Rn with
coordinates {t, q1, . . . , qn}, where I = {θ1, . . . , θk} is a set of difference 1-forms.

Giving a difference 1-form ϕ on Z × Rn, and for each integral lattice f (Z) of I , we set

�(Z, f ) =
∑
t∈Z

〈f ∗ϕ,�t 〉D.

We may view the � : V (I) → R as a function on the lattice Z, where V (I) is the set of
the integral lattice of I, and consider

Problem 3.1. Determine the discrete variational equations of the � over Z.

We denote by (I, ϕ) the discrete variational problem associated with the function �(Z, f ).

4
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Example 3.2. Let J k
D(Z × Rn) be a discrete k-jet bundle and L be a function on J k

D(Z × Rn).
Set ϕ = LdDt and take

I = {
dDqα − �tq

αdDt, dD�tq
α − �2

t q
αdDt, · · · , dD�k−1

t qα − �k
t q

αdDt
}
.

The (I ;ϕ) is the kth order discrete variational problem.

3.2. Discrete variational equations

Now, we follow PA Griffiths’ method in the differential case [1] to derive the discrete variational
equations for the integral lattice of (I, ω).

Setting a regular sublattice [0,∞) with a coordinate s, a discrete variation of f is given
by

F : Z × [0,∞) → (Z × [0,∞)) × Rn, (1)

such that if we let fs : Z → Z × Rn be the restriction of F to Z × {s}, then f0 = f . The
associated discrete variational vector field is

V := F∗(�s)|imf .

Proposition 3.3. Suppose that f : Z → Z ×Rn with a discrete variation F and an associated
discrete variational vector field V . Let θ be a difference form on (Z × [0,∞)) × Rn. Then

L�s
(F ∗θ)|Z = f ∗(iV dDθ + dDiV θ).

Proof. Let {t, s} be the coordinates of regular sublattice Z × [0,∞) and V be a discrete vector
field on imf , such that

V (t) = F∗�s |f (t) ∈ Timf (im F).

The definition of the discrete Lie derivative operator implies that

L�s
F ∗θ = dD

(
i�s

F ∗θ
)

+ i�s
(dDF ∗θ)

= dD

(
iF∗�s

θ
)
(t, s) +

(
iF∗�s

dDθ
)
(t, s)

= F ∗(dDiF∗�s
θ + iF∗�s

dDθ
)
.

Both sides of this equation are difference forms on Z × [0,∞), and the proposition follows
by restricting both sides to Z. �

If θ does not contain dDs, then

L�s
(F ∗θ)|Z = f ∗(iV dDθ + dDiV θ)

= f ∗iV dDθ

= �s(F
∗θ)|Z.

Now, we derive the discrete variational equations for the integral lattice of I . We assume
that fs is an integral lattice of I . The map fs can be looked as map F(t, s) in (1), so
F ∗θα = gα(t, s)dDs. Thus,

L�s
(F ∗θα)|Z = �sg

α(t, 0)dDs|Z = 0.

By Proposition 3.3, this gives

f ∗(iV dDθα + dDiV θα) = 0. (2)

A discrete variation of Z in Z × Rn is then given by the discrete vector field V on imf . We
extend V to a discrete vector field on imF , still denoted by V . Then iV dDθα + dD(iV θα) is a
1-form on imF and (2) is equivalent to

F ∗(iV dDθα + dDiV θα)|Z = 0. (3)

5



J. Phys. A: Math. Theor. 41 (2008) 085208 Z Xie and H Li

We call (2) or (3) the discrete variational equation of f : Z → Z × Rn as an integral lattice
of I .

Remark 3.4.

(1) (3) depends only on V and not on the extension of V to a discrete vector field on
F(Z × [0, +∞)).

(2) The (3) vanishes in case V is tangent to f (Z), and therefore depends only on the section
[V ] of the normal bundle determined by V .
In fact, suppose that V is tangent to f (Z), i.e., V = F∗�t . If V is any extension, then
iV θα|f (Z) = 0, so F ∗(dDiV θα)|Z = 0. Meanwhile F ∗(iV dDθα) contains no dDt , so
F ∗(iV dDθα)|Z = 0.

(3) Let θ = θαλα , where the λα are real functions on Z. Then

f ∗(iV dDθ + dDiV θ) = f ∗(iV (dDθαλα + θαdDλα) + dDiV (θαλα))

= f ∗(iV dDθα + dDiV θα)λα

= 0.

3.3. Discrete Euler–Lagrange equations

Let V be a discrete tangent vectors field on imf , satisfies (3) and V |{−∞,∞} = 0. Let Z×{s} be
a 1-parameter family of the lattice with the discrete variational vector V . By Proposition 3.3,
we have

�s

⎛⎝ ∑
t∈Z×{s}

〈F ∗ϕ,�t 〉D
⎞⎠∣∣∣∣∣∣

s=0

=
∑
t∈Z

〈f ∗(iV dDϕ + dDiV ϕ),�t 〉D

=
∑
t∈Z

〈f ∗iV dDϕ,�t 〉D + iV ϕ|∞ − iV ϕ|−∞

=
∑
t∈Z

〈f ∗iV dDϕ,�t 〉D.

We consider a function

δD�(Z, f )(V ) := �s

⎛⎝ ∑
t∈Z×{s}

〈F ∗ϕ,�t 〉D
⎞⎠∣∣∣∣∣∣

s=0

=
∑
t∈Z

〈f ∗(iV dDϕ),�t 〉D. (4)

Concerning (4) we make following

Remark 3.5.

(1) If we set

ϕ1 = ϕ + θαλα, (5)

then since θα|f (Z) = 0 the function �(Z, f ) remains unchanged. So is the function
δD�(Z, f ), since∑
t∈Z

〈f ∗(iV dD(ϕ1 − ϕ)),�t 〉D =
∑
t∈Z

〈f ∗(iV dD(θαλα)),�t 〉D

= −
∑
t∈Z

〈f ∗dD(iV θα)λα,�t 〉D

= f ∗(iV θα)Etλα|−∞ − f ∗(iV θα)Etλα|∞
= 0.

6
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(2) If we set

ϕ2(V ) = ϕ + dDη(V ), (6)

where η(V ) linear depends on V , then because d2
D = 0 certainly∑

t∈Z

〈f ∗(iV dDϕ),�t 〉D =
∑
t∈Z

〈f ∗(iV dDϕ2),�t 〉D.

Since ∑
t∈Z

〈f ∗(ϕ2),�t 〉D =
∑
t∈Z

〈f ∗(ϕ),�t 〉D + f ∗η(V )|∞ − f ∗η(V )|−∞,

we shall only want to consider substitutions (6), where η(V ) depends linearly on V . For
such an η we have

η{−∞,∞} = 0, (7)

whenever V{−∞,∞} = 0 holds.
(3) The quantity of δD�(Z, f )(V ) depends only on V ∈ Timf (imF) and not on the extension

of V . As the proof of Remark 3.4(2), if V is tangent to f (Z), then δD�(Z, f )(V ) = 0.
Therefore δD�(Z, f )(V ) depends only on [V ].

Remark 3.5 follows that whenever the equations

δD�(Z, f )[V ] = 0 (8)

holds, they must be invariant under substitutions (5) and (6).
Invariance under (6) means essentially that equations (8) should be expressed in terms of

dDϕ, and combining this with invariance under (5) gives the conclusion: the (8) should be
expressed in terms of dD(ϕ + θαλα), where λα are to be determined real functions on Z.

With these observations as guide, we can turn to the derivation of the discrete Euler–
Lagrange equations.

Let

Lα(V ) = iV dDθα + dDiV θα. (9)

If (8) holds, then f ∗Lα(V ) = 0 and V{−∞,∞} = 0 can induce∑
t∈Z

〈f ∗(iV dDϕ),�t 〉D = 0.

Letting η(t) = ∑t−1
−∞〈iV dDϕ, f∗�t 〉D , we have

iV dDϕ|f (Z) = dDη|f (Z), η|{−∞,∞} = 0.

In particular, if

f ∗(iV dDϕ) = f ∗(Lα(V ))λα + f ∗dDη, (10)

then (8) will hold.
If we set f ∗η = −f ∗(iV θα)λα, then (7) is satisfied and

f ∗(Lα(V ))λα + f ∗dDη = f ∗(iV dD(θαλα)). (11)

For this choice of η, and replacing λα by −λα , we obtain from (10),

iV (dD(ϕ + θαλα)) = 0|f (Z), ∀V, (12)

or equivalent iV (dD(ϕ + θαλα))|Z = 0 (here we omit f ∗). These equations satisfy the
conditions of being invariant under substitutions (4) and (5); in fact, they are the simplest such
equations. Consequently, we give the following

7
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Definition 3.6. The discrete Euler–Lagrange equations associated with the discrete
variational problem (I, ϕ) are equations (12) on the integral lattice f (Z) of I.

Example 3.7. Consider discrete 1-jet bundle of Z × Rn = {t, q1, . . . , qn} and let L be a
function on J 1

D(Z × Rn).

We set ϕ = L(t, qα, q̇α)dDt and take I = {dDqα − q̇αdDt}. Then using{
ϕ = L(t, qα, q̇α)dDt

θα = dDqα − q̇αdDt.
(13)

Suppose q̇α(t, s) = s + q̇α(t) and qα(t, s) = s + qα(t). Taking V = �q̇α(t,s), V = �qα(t,s) for
iV dD(ϕ + θαλα), respectively, the discrete Euler–Lagrange equations of (13) are{

(Lq̇α − Etλα)dDt = 0

(Lqα − �tλα)dDt = 0,
(14)

where

Lq̇α := �sL(t, qα(t), q̇α(t, s))|s=0 = L(t, qα(t), q̇α(1, t)) − L(t, qα(t), q̇α(t)),

Lqα := �sL(t, qα(t, s), q̇α(t))|s=0 = L(t, qα(1, t), q̇α(t)) − L(t, qα(t), q̇α(t)).

In fact when V = �q̇α(t,s), then [V ] = �s, dDq̇α(t, s) = dDs + terms contain dDt , and

iV dD(ϕ + θαλα)|Z = i�q̇α(t,s)
dD(L(t, qα(t), q̇α(t, s))dDt + (dDqα(t) − q̇α(t, s)dDt)λα)|s=0

= i�s
(Lq̇αdDs − dDsEtλα) ∧ dDt

= (−Lq̇α + Etλα)dDt.

If V = �qα(t,s), then [V ] = �s, dDqα(t, s) = dDs + terms contain dDt , and

iV dD(ϕ + θαλα)|Z = i�qα(t,s)
dD(L(t, qα(t, s), q̇α(t))dDt + (dDqα(t, s) − q̇α(t)dDt)λα)|s=0

= i�s
(LqαdDs − dDs�tλα) ∧ dDt

= (−Lqα + �tλα)dDt

Since dDt is a base of T ∗Z, equations of (14) is equivalent to

�tE−tLq̇α = Lqα . (15)

If s is continuous variable, equation (15) is just the discrete Euler–Lagrange equations given
by Guo and Wu [12].

Example 3.8. Let L = 1
2miq̇

i(q̇i − 1) − U(q1, . . . , qn) be a real function on J 1
D(Z × Rn) =

(t, q1, . . . , qn, q̇1, . . . , q̇n).

Letting q̈α = �t q̇α and submitting L into (15), we obtain

mαq̈α = EtUqα . no summation (16)

In fact

Lqα = �s

(
1
2miq̇

i(q̇i − 1) − U(q1, . . . , qα(s), . . . , qn)
)∣∣

s=0

= −�sU(q1, . . . , qα(s), . . . , qn)|s=0

= Uqα ,

Lq̇α = �s

(
1
2m1q̇

1(q̇1 − 1) + · · · + 1
2mαq̇α(s)(q̇α(s) − 1)

+ · · · + 1
2mnq̇

n(q̇n − 1) − U(q1, . . . , qn)
)∣∣

s=0

= 1
2mα(�sq̇

α(s)Es(q̇
α(s) − 1) + q̇α(s)�s(q̇

α(s) − 1))|s=0

= mαq̇α.

8
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If s is a continuous variable, then

lim
ε→0

L = lim
ε→0

(
1
2miq̇

i(q̇i − ε) − U(q1, . . . , qn)
) = 1

2miq̇i
2 − U(q1, . . . , qn).

The limε→0 L is nothing but the function used by Lee [3, 4] to educe the discrete Newton’s
equation (16). If Uqα = Kqα , where K is a constant, then

mαq̈α = KEtq
α. no summation

If s, t are the continuous variables, then it is the equation of a harmonic oscillator.
Further, the interested reader would probably benefit from a detailed description of how

(15) fit in framework developed by Marsden and West et al.
Consider their discrete Euler–Lagrange equations [10]

D2L(qα(t − 1), qα(t)) + D1L(qα(t), qα(t + 1)) = 0,

where D2L(qα(t − 1), qα(t)) = ∂L(qα(t−1),qα(t))

∂qα(t)
, D1L(qα(t), qα(t + 1)) = ∂D1L(qα(t),qα(t+1))

∂qα(t)
.

Let

Lq̇α(t,εs)|s=0 = L(t, qα(t), q̇α(ε, t)) − L(t, qα(t), q̇α(t))

ε
,

Lqα(t,εs)|s=0 = L(t, qα(ε, t), q̇α(t)) − L(t, qα(t), q̇α(t))

ε
.

Since
q̇α(t, εs) = q̇α(t) + εs

= (qα(t + 1) + εs) − qα(t),

= qα(t + 1, εs) − qα(t)

and �sq̇
α(t, εs) = �sq

α(t + 1, εs) = ε, so

D2L(qα(t), qα(t + 1)) = lim
ε→0

�sL(qα(t), qα(t + 1, εs))

ε

∣∣∣∣
s=0

= lim
ε→0

�sL(qα(t), q̇α(t, εs))

ε

∣∣∣∣
s=0

= lim
ε→0

Lq̇α(t,εs)

∣∣
s=0 .

Since the perturbation of qα(t) is qα(t, s) = qα(t) + s for all t ∈ Z,

lim
ε→0

Lqα(t,εs)|s=0 = lim
ε→0

�sL(qα(t, εs), qα(t + 1, εs))

ε

∣∣∣∣
s=0

= lim
ε→0

�sL(qα(t, εs), qα(t + 1, ε))

ε

∣∣∣∣
s=0

+ lim
ε→0

�sL(qα(t), qα(t + 1, εs))

ε

∣∣∣∣
s=0

= D1L(qα(t), qα(t + 1)) + lim
ε→0

Lq̇α(t,εs)

∣∣
s=0.

Hence,
0 = D2L(qα(t − 1), qα(t)) + D1L(qα(t), qα(t + 1))

= lim
ε→0

(E−tLq̇α(t,εs) + Lqα(t,εs) − Lq̇α(t,εs))|s=0

= lim
ε→0

(Lqα(t,εs) − �tE−tLq̇α(t,εs))|s=0.

This is equivalent to the limit of (15).

4. Discrete Hamilton’s mechanics

In this section, we use discrete variational equations to educe the discrete Hamilton’s
equations, which is equivalent to discrete Euler–Lagrange equations under the discrete
Legendre transform [12]. We also obtain the discrete Noether’s theorem.

9



J. Phys. A: Math. Theor. 41 (2008) 085208 Z Xie and H Li

4.1. Discrete Hamilton’s equations

Let Z×R2n be a discrete vector bundle with coordinates {t, p1, . . . , pn, q1, . . . , qn}. Suppose
we are given a function H = H(t, Etp

i(t), qi(t)). Then, we can construct the discrete 1-form

ω = dDqipi − H(t, Etp
i, qi)dDt. summation

Setting a regular sublattice [0,∞) with a coordinate s, a discrete variation of
∑

t∈Z〈ω,�t 〉D
is given by ∑

t∈Z

〈ω̃,�t 〉D, (17)

where

ω̃ = dDqi(s, t)pi(s, t) − H(t, Etp
i(s, t), qi(s, t))dDt, ω̃|t={∞,−∞} = 0.

Now we find conditions to make the value of (17) independent of s at s = 0. In other
words, we want to find conditions for vanishing the following expression:

�s

∑
t∈Z

〈ω̃,�t 〉D
∣∣∣∣
s=0

=
∑
t∈Z

〈i�s
dDω̃ + dDi�s

ω̃,�t 〉D
∣∣∣∣
s=0

=
∑
t∈Z

〈i�s
dDω̃,�t 〉D|s=0 + i�s

ω̃|s=0,t=∞ − i�s
ω̃|s=0,t=−∞

=
∑
t∈Z

〈i�s
dDω̃,�t 〉D|s=0. (18)

Considering the perturbation pi(t, s) = pi(t) + s or qi(t, s) = qi(t) + s, respectively, we
obtain

i�s
dDω̃ = (−�tq

i + HEtpi (t, Etp
i, qi))dDt,

i�s
dDω̃ = (�tp

i + Hqi (t, Etp
i, qi))dDt,

(19)

where

HEtpi (t, Etp
i, qi) := �sH(t, Etp

i(t, s), qi(t))|s=0

= H(t, Etp
i(t, 1), qi(t)) − H(t, Etp

i(t), qi(t)),

Hqi (t, Etp
i, qi) := �sH(t, Etp

i(t), qi(t, s))|s=0

= H(t, Etp
i(t), qi(t, 1)) − H(t, Etp

i(t), qi(t)).

The vanishing of (19) is equivalent to the discrete Hamilton equations

�tp
i = −Hqi (t, Etp

i, qi), �tq
i = HEtpi (t, Etp

i, qi). (20)

If pi and qi satisfy equations (20), then the value of (18) vanishes.
If s is a continuous variable, then (20) is equivalent to the discrete Hamilton equations

given by Guo et al [12].

4.2. Discrete Legendre transformation

Now we show that the discrete Hamilton’s equations can also be derived from discrete Euler–
Lagrange equations and vice versa, using the discrete Legendre transformation, which is given
by Guo et al if s is continuous [12]:

H(t, Etp
i, qi) := q̇iEtp

i − L(t, q̇i , qi), summation

If only qi or pi or q̇i depends on s respectively, then we obtain

Hqi = −Lqi , q̇i = HEtpi , Etp
i = Lq̇i , (21)

10
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by equaling the coefficients of dDs in equation

dDH(t, Etp
i, qi) = dD(q̇iEtp

i − L(t, q̇i , qi)).

From (15) and (21), we get

�tp
i = −Hqi .

Combining with the third equation of (21), we induce the discrete Hamilton’s equation from
discrete Euler–lagrange equations.

From (20) and (21), we get

�tE−tLq̇i = Lqi .

So we can also derive the discrete Euler–lagrange equations from discrete Hamilton’s
equations.

By computation, we find that the limit of the discrete Legendre transformation here is not
equivalent to the transformations given by Lall et al [11]. Since their equations are educed
from their transformations, the discrete Hamilton’s equations here do not fit in their framework.

4.3. Discrete Noether’s theorem

It is well known that Noether’s theorem is one of the fundamental theorems in the differential
case. Now we consider this theorem and show that the result here also fits in the framework
developed by Marsden et al [10].

Now we consider the discrete 1-jet bundle of Z × Rn = {t, q1, . . . , qn} and a function
L = L(t, qi, q̇i). Consider L(t, qi(t, s), q̇i(t)) a discrete variation of L. The L is said to admit
the discrete variation, if

L(t, qi(t, s), q̇i(t)) = L(t, qi(t), q̇i(t)).

From this condition, we have

0 = �sL(t, qi(t, s), q̇i(t))|s=0

= Lqi

From [15], it is equivalent to

�tE−tLq̇α = 0.

More precisely, we have

Theorem 4.1. Noether’s theorem in the discrete case. If the function L on J 1
D(Z ×Rn) admits

the discrete variation

qi(s, t) : J 1
D(Z × Rn) → J 1

D(Z × Rn), s ∈ R,

then the discrete Lagrangian equations corresponding to L have a first integral

I (qi, q̇i) = E−tLq̇i .

Now we show how this theorem fits in the framework developed by Marsden and West
et al.

If s is continuous, then

0 = lim
ε→0

�tE−tLq̇i (t,εs)|s=0

= lim
ε→0

Lq̇i(t,εs)|s=0 − E−t lim
ε→0

Lq̇i(t,εs)|s=0

= D2L(t, qi(t), qi(t + 1)) − D2L(t, qi(t − 1), qi(t)).

It is nothing but the special case of their discrete Noether’s theorem [10].

11
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Future work. An important and uneasy problem is that how do the discrete solutions of
equations (15) and (20) behave with respect to the analytical solutions? In order to give a
satisfactory answer, we need to do much effort.
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