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Abstract

In discrete mechanics, difference equations describe the fundamental physical
laws and exhibit many geometric properties. Can these equations be obtained
in a geometric way? Using some techniques in exterior difference systems,
we investigate the discrete variational problem. As an application, we
give a positive answer to the above question for the discrete Newton’s,
Euler-Lagrange, and Hamilton’s equations.

PACS numbers: 45.10.Na, 02.40.Gh
Mathematics Subject Classification: 52C99, 81T75, 03G10

1. Introduction

In recent years, there has been a substantial growth of interest in discrete mechanics [2—12]. In
this renascent field, difference equations describe the fundamental physical laws and exhibit
many geometric properties such as the desirable symmetry and conservation laws. It should
be an interesting problem to deduce these equations in a geometric way. In the continuous
case, it is well known that utilizing techniques from exterior differential systems such as the
derived flag and prolongation allows a systematic treatment of the variational principles in
greater generality than customary and sheds new light on even the classical Lagrange problem
[1]. Naturally, we consider how to apply the techniques in discrete differential geometry and
exterior difference systems [12—17] to the discrete variations in discrete mechanics.

e Using some techniques in exterior difference systems, we set up the problem of the
discrete variation on a regular lattice, deduce the discrete variational equations and obtain
the discrete Euler—Lagrange and Newton’s equations in a geometric way. (Section 3).

e By discrete variational equations, we obtain the discrete Hamilton’s equations and
Noether’s theorem, which is equivalent to discrete Euler—Lagrange equations under the
discrete Legendre transform. (Section 4).

* This paper is supported partially by NSFC 10471143 and NKBRSF 2004CB318001 of China.
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e If the variable of variation is continuous, the equations and transform here fit in the
framework developed by HY Guo, K Wu er al [12]. The discrete Euler-Lagrange
equations and Noether’s theorem here also fit in the framework developed by Marsden
and West et al [10].

The authors wishes to thank Professors HY Guo and K Wu for a great help for this paper.
In fact the inspiration of this paper comes from their revelatory and pivotal suggestions and
creative and essential works.

2. Preliminaries

In this section, we recall some concepts in exterior difference systems [10, 12—17], which are
used in this paper.

2.1. Exterior difference operator
Consider a regular lattice Z™ with coordinates {x!,...,x™}, where Zis a ring of integers. The
discrete tangent space at the node p € Z™ is
T,Z" :=span{A;|p,i =1,...,m},
where A; is a difference operator in the direct of x*, such that
A[g(xl, ox = E[g(xl, R A g(xl, oo x™),
where
E[g(xl, oo x™ =g(x1, xt LX),

and g is a R-valued function on Z™ and R is a field of real numbers.
The discrete cotangent space at p is

Tp*Z’” = span{dei|p,i =1,...,m},
where dpx! satisfies
(dpx', Aj)p == Aj(x') = 8.
The discrete tangent and cotangent bundles over Z™ are
rz" = J 1,2, ez = 152",
pEZ’" peZ}H

respectively. Sections on TZ™ and T*Z™ are called discrete tangent vector fields and
difference 1-forms, respectively.
As the differential case, we can construct the exterior difference form algebra [12]

Q" = @,ezQ",
where Q" is a set of difference n-forms, generated by

hdpx/t A+« Adpx, Jlyeeesjn €1,...,m,
where h is the R-valued function on Z™,

dpx'h = E;hdpx', dpx' Adpx! = —dpx’ Adpx'.

The exterior difference operator dp : QF — QK1 is defined as

dpw = Z Aith)Ci VAN dDle VANRERIVAN dDXjk,
i=1
where w = hdpx/t A --- Adpx’*. The dp satisfies the Leibnitz law and d2 = 0 [12].
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2.2. Exterior difference systems

Let (a, 7, Z™) be a discrete vector bundle, i.e. « = Z™ x R" and 7(a) = Z™. Suppose x'
and u/ are the coordinates on the regular lattices Z™ and R", respectively. Consider section

f:
uizfi(x',...,x’”), 1<i<n.
Define the map f* : AT* f(Z™) — AT*Z™ as follows:
Frh@t, .. uMdpu™) i=ho f(x', ..., x™dp o f),
@', .. uMdpu Ao Adpu') i=ho f(xb L xX™) frdpult Ao A frdpul
S is linear map and commutes with A and dp, called the discrete cotangent map of f [17].

Definition 2.1. Let («, w, Z™) be a discrete vector bundle and any section on Z™ has the
coordinate expression

w =l (xt L am), 1<i<n.
Let Q* = @z, where QF is a set of difference k-forms, generated by any k elements in
{dpx', ..., dpx™, dpu', ..., dpu"} multiply by A, with coefficients of R-valued function on
VA

(1) A subring of I C Q* is called a right ideal, if
(a) a € I impliesa A B € 1 forall B € Q;
(b) o € I implies that all its components in Q* are contained in I.
(2) An exterior difference system is given by a right ideal I C 2* that is closed under dp.

(3) An integral lattice of the system is given by a section f : Z" — Z™ x R" such that
ffa=0foralla € 1.

We note that the exterior difference system used here is a local system. This system can include
all the local ordinary and partial difference equations on a regular lattice, if introducing the
discrete jet bundle on the regular lattice.

Definition 2.2. Let (o, w, Z™) = {x',...,x™ u', ..., u"} be a discrete vector bundle and
Aﬁmik = A, -+ A;,.. Thediscrete k-jet bundle of o is a discrete vector bundle with coordinates
{x' ul, At AL ) 1<i,ip,...,ig <m, 1<j<n,

denoted by J¥a.
Example 2.3. Consider the second-order difference equations in the discrete vector bundle
Z x R ={x,y},
Aiy =F(x,y, Ayy).
It can be written as
d[)y - )'7de =0
dpy — F(x,y,y)dpx =0
in Jé(z X R) = {X,y,)"}a)" = Axy

Consider the partial difference equation on Z" x R = {x',, ..., x", z},
F(x',z, Aiz) =0, 1<i<n.
Letting p; := Az, it can be written as
F(x',z,p)=0

dpz — pidpx' =0,
inJH(Z" x Ry ={x',....x", 2, p1, ..., pu}-



J. Phys. A: Math. Theor. 41 (2008) 085208 Z Xie and H Li

2.3. Pairing formula

Consider discrete vector fields and difference 1-forms on Z" = {x!, ... x™}:
v; =dY Ay, v = frdpxh, 1<, j, ki, kj <m.
The pairing formula of AT Z™ and AT*Z™ is

1 .
WA AV U A AV D = fiEi fiy e Eiveesiy o )

i gt WE. gl E.. . i
X (E b, 5(,”)& Eja Ejyosj,_a’,
g
where

i+t = Ejio---0Ej

1, o is even arrange
&= Jp-1°

—1, o is odd arrange,

For example, if p = 2, then
(fudpx" A fodpx™,a"Aj, ANa”A)p = fi Ei fi,a" Ei,a” — fi E;, fi,a”Ea".
Now we can define the discrete tangent map fi : ATZ™ — AT f(Z™) as follows:
(hdpu' A~ Adpu™, fi(kDg, A+ A Ag)),
= (f*(hdpu" A -~ Adpu"), kDo, A+ A Ag,)p-
In the similar way as Beauce et al did [13], we can define the discrete contract operator
iy:
(iyw, Xi A AX,_1)p =(w, X1 A---AX, 1 AY)p,
where Y = Y'A; € TZ™, and discrete Lie derivative operator using the Cartan formula
Lxw :=ixdpw+dpixw.

More information about these or the similar operators can be found in [10, 12-17].

3. Discrete variational equations

In this section, we investigate the application of exterior difference systems to discrete
variations. At first, we set up the problem of the discrete variation using the language of
exterior difference systems.

3.1. Discrete variational problem

We consider an exterior difference system / on the discrete vector bundle Z x R" with
coordinates {t, ¢!, ..., ¢"}, where I = {0', ..., 6%} is a set of difference 1-forms.
Giving a difference 1-form ¢ on Z x R”", and for each integral lattice f(Z) of I, we set

O(Z, f) =Y (f*¢. A)p.

teZ

We may view the ® : V(I) — R as a function on the lattice Z, where V (1) is the set of
the integral lattice of 7, and consider

Problem 3.1. Determine the discrete variational equations of the ® over Z.

We denote by (1, ¢) the discrete variational problem associated with the function ®(Z, f).
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Example 3.2. Let J ,’3(2 X R") be a discrete k-jet bundle and L be a function on J f)(Z X R™).
Set ¢ = Ldpt and take

I ={dpq* — Aq®dpt,dpAig® — Ajq¥dpt, -+, dpAf~'q* — Afq*dpt}.
The (I; ¢) is the kth order discrete variational problem.

3.2. Discrete variational equations

Now, we follow PA Griffiths’ method in the differential case [1] to derive the discrete variational
equations for the integral lattice of (I, w).
Setting a regular sublattice [0, co) with a coordinate s, a discrete variation of f is given
by
F:Z x[0,0) = (Z x [0,0)) x R", ()
such that if we let f; : Z — Z x R”" be the restriction of F to Z x {s}, then fy = f. The
associated discrete variational vector field is

V.= F*(As)limf~

Proposition 3.3. Suppose that f : Z — Z x R" with a discrete variation F and an associated
discrete variational vector field V. Let 0 be a difference form on (Z x [0, 00)) x R". Then

La,(F*0)|z = f*(ivdpb +dpiy0).

Proof. Let {¢, s} be the coordinates of regular sublattice Z x [0, oo) and V be a discrete vector
field on im f, such that

V(t) = Fillslr@y) € Timp(im F).
The definition of the discrete Lie derivative operator implies that
LA F*0 =dp(ia, F*0) +ia, (dpF*0)
=dp(ir,a,0)(t,s) + (ir,a,dpb)(t,s)
= F*(dpir,a,0 +ip.a,dpb).
Both sides of this equation are difference forms on Z x [0, 00), and the proposition follows
by restricting both sides to Z. ]
If 6 does not contain dps, then
La,(F*0)|z = f*(ivdpt +dpiy0)
= f*iydpo
= A;(F*0)|z.

Now, we derive the discrete variational equations for the integral lattice of /. We assume
that f; is an integral lattice of /. The map f; can be looked as map F(t,s) in (1), so
F*6% = g*(t, s)dps. Thus,

L, (F*0%)z = As8%(t, 0)dps|z = 0.
By Proposition 3.3, this gives
f*(inDO"‘ + dDiVHD‘) =0. (2)

A discrete variation of Z in Z x R" is then given by the discrete vector field V on imf. We
extend V to a discrete vector field on imF, still denoted by V. Then iydp6® + dp(iy6%) is a
1-form on imF and (2) is equivalent to

F*(inD9“+dDiV9°’)|z =0. 3)

5
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We call (2) or (3) the discrete variational equation of f : Z — Z x R" as an integral lattice
of I.

Remark 3.4.
(1) (3) depends only on V and not on the extension of V to a discrete vector field on
F(Z x [0, +00)).
(2) The (3) vanishes in case V is tangent to f(Z), and therefore depends only on the section
[V] of the normal bundle determined by V.
In fact, suppose that V is tangent to f(Z), i.e., V = F,A,. If V is any extension, then
iv0% rizy = 0, so F*(dpiy0*)|z = 0. Meanwhile F*(iydp8) contains no dpt, so
F*(iydp0*)|z = 0.
(3) Let 8 = 6%X,, where the A* are real functions on Z. Then
f*(ivdpO +dpiy0) = f*(iy(dp0“re +0%dpry) +dpiy (L))
= f*(ivdDGO‘ + dDiVQ"‘))W
=0.

3.3. Discrete Euler—Lagrange equations

Let V be a discrete tangent vectors field onim £, satisfies (3) and V |{_o, o0} = 0. Let Z x {s} be
a 1-parameter family of the lattice with the discrete variational vector V. By Proposition 3.3,
we have

Al DD (Fro.Mdp || =D (f*livdpe +dpive), A)p

teZx{s} teZ

=Y (frivdpe, Adp +ivele — ivel oo

teZ

=Y (frivdpe, A)p.

teZ

s=0

We consider a function

Sp®(Z,. V) =2, | D (Fro.0n || =Y (FGvdpe). Ao @)

teZ x{s} $=0 teZ

Concerning (4) we make following
Remark 3.5.
(1) If we set
1 =9 +0%, &)

then since 8%|szy = 0 the function ®(Z, f) remains unchanged. So is the function
sp®(Z, f), since

D livdp(pr — 9)), Adp = Y (f*(ivdp(©“re)), A)p

teZ teZ
==Y (f*dp(iv0*)ra Ar)p
teZ
= f*iv0*) Ehal oo = *(iv0*) Ehaloo
=0.
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(2) If we set

p(V) =@ +dpn(V), (6)
where 7(V) linear depends on V, then because d2 = 0 certainly

> vdpe), A)p =Y (f*Givdpea), Ar)p.

teZ teZ
Since

D @) A =Y (F1 @), Adp + (Voo — F (V)| 00

teZ teZ

we shall only want to consider substitutions (6), where (V') depends linearly on V. For
such an n we have

N{—c0,00} = 0, (7)

whenever V{_ o) = 0 holds.

(3) The quantity of §p®(Z, f)(V) depends only on V € T;y, s (imF') and not on the extension
of V. As the proof of Remark 3.4(2), if V is tangent to f(Z), then §p®(Z, f)(V) = 0.
Therefore §p®(Z, f)(V) depends only on [V].

Remark 3.5 follows that whenever the equations
Sp®(Z, HIVI=0 ®)

holds, they must be invariant under substitutions (5) and (6).

Invariance under (6) means essentially that equations (8) should be expressed in terms of
dp@, and combining this with invariance under (5) gives the conclusion: the (8) should be
expressed in terms of dp (¢ + 0%Ay), where L, are to be determined real functions on Z.

With these observations as guide, we can turn to the derivation of the discrete Euler—
Lagrange equations.

Let

La(V) = inDQ"‘ + dDiVQ"‘. )]
If (8) holds, then f*L*(V) = 0 and V|_u o0} = 0 can induce

> (f*ivdpe). Ap = 0.

teZ
Letting n(¢) = Z’:olo(ivdmp, f«A;)p, we have
ivdpolrzy =dpnlyrz), N{—c0,00) = 0.

In particular, if
fGvdpp) = f*(L*(V))Ay + f*dpn, (10

then (8) will hold.
If we set f*n = — f*(iy0%) 1y, then (7) is satisfied and

FELEV Ao + frdpn = f*(ivdp(0“La)). (1)
For this choice of 7, and replacing A, by —X,, we obtain from (10),
iv(dp(@ +60°Ly)) =0l sz), vV, (12)

or equivalent iy (dp(¢p + 6%Ay))|z = O (here we omit f*). These equations satisfy the
conditions of being invariant under substitutions (4) and (5); in fact, they are the simplest such
equations. Consequently, we give the following
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Definition 3.6. The discrete Euler—Lagrange equations associated with the discrete
variational problem (I, @) are equations (12) on the integral lattice f(Z) of I.

Example 3.7. Consider discrete 1-jet bundle of Z x R" = {t,q',...,q"} and let L be a
function on J})(Z x R™).

We set ¢ = L(¢t, g%, ¢*)dpt and take I = {dpq® — ¢“dpt}. Then using

= L(¢t,qg%, ¢g%)dpt
% (t, g% q¢*)dp (13)
0% = dpq® — ¢%dpt.

Suppose ¢%(t,s) = s +q*(t) and g* (¢, s) = s +q*(t). Taking V = Aje(r5), V = Ageq,s) for
ivdp (¢ +0%Ay), respectively, the discrete Euler—Lagrange equations of (13) are
{(an — EAy)dpt =0 "
(Lge — Arrg)dpt =0,
where
Lge i= AL(t, q%(t), 4°(t, ) |s=0 = L(t, % (1), ¢*(1, 1)) — L(t,q* (1), ¢“ (1)),
Lge := AL(t,q%(t,5), 4% () |s=0 = L(t, ¢*(1, 1), ¢ (1)) — L(t,q“ (1), ¢“(1)).
In fact when V = Aye 5, then [V] = A, dpg®(t, s) = dps + terms contain dpt, and
ivdp(p +0“Aa)lz = inge,,dp(L(t,q%(1),q%(t, s))dpt + (dpq® () — ¢*(t, $)dpt)re)ls=0
=ip,(Lgedps —dpSEdy) Ndpt
= (=Lg« + E;Ay)dpt.
If V= Ageqy), then [V] = A, dpg®(t, s) = dps + terms containdpt, and
ivdp(p +0“Aa)|z = ing,,dp(L(t,q%(,5), ¢*())dpt + (dpq®(t, s) — ¢*(t)dpt)re)|s=0
=i, (Ly«dps —dpsAidy) N dpt
= (—Lg« + Asdo)dpt
Since dpt is a base of T*Z, equations of (14) is equivalent to
AE_ Ly = Lya. (15)

If s is continuous variable, equation (15) is just the discrete Euler-Lagrange equations given
by Guo and Wu [12].

Example 3.8. Let L = im;¢'(¢" — 1) —U(q", ..., ¢") be areal function on J}(Z x R") =
@t q"....q"q" ..., q".
Letting g% = A;g% and submitting L into (15), we obtain
meq® = EUge. no summation (16)
In fact
Lye = As(3mig" (@' =D = U(q'.....q%).....q")|
= _AS'U(qla sy qa(s)’ LI qn)lY:()
= Uy,
Ly = As(3mig' @' = D+ + 3mag® ()@ () = 1)
o Imag (@ =D = UG qM)] .,
= %ma(Asi]a(S)Es(i]a(S) =D +4%(s)As(G%(s) — 1) ls=0

s
=muq~.
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If s is a continuous variable, then
. c 01 i 1 n 1, 2 1
ll_r)%L =21‘%(§miql(q’ —e)—-U(q,...,q )) =smiq- —U(q ,....q").
The lim,_,o L is nothing but the function used by Lee [3, 4] to educe the discrete Newton’s
equation (16). If U,e = Kg“, where K is a constant, then

meq® = KE,q%. no summation

If s, t are the continuous variables, then it is the equation of a harmonic oscillator.

Further, the interested reader would probably benefit from a detailed description of how
(15) fit in framework developed by Marsden and West et al.

Consider their discrete Euler—Lagrange equations [10]

DyL(g%(t — 1), q% (1)) + D1L(g*(1), g% (1 + 1)) = 0,
where DzL(é]a(f _ 1),6]“([)) — 3L(qa([71)’qu(,))7 D]L(qa(t),qa(t + 1)) — BDlL(q“(t),q”(Hl))'

33°(1) aq* (1)
Let
L L(t,q%(1),q% (e, 1)) — L(z,q%(1), 4% (1))
(/"‘(t,ss)ls':O = e )
L L(t,q%(e, 1), 4% (1)) — L(t,q%(1), 4% (1))
q“(t,sx)lx:() = P .
Since

q(t,es) = q“(t) +es
= (¢t + 1) +es) —q*(1),
=q%(t+1,85) —q“(1)
and Agg*(t, es) = Agq®(t +1,e5) = ¢, 80
AsL(g* (1), q%(1 + 1, €5))
e
. AGL(gU(1), gU(2, e5))
= lim
e—0 I

D>L(g"(®), ¢"(t + D)) = lim

= Hm Lo,y -
Since the perturbation of g% (¢) is g* (¢, s) = q*(¢) + s forall ¢ € Z,
AsL(g%(t,e5),q% (@ + 1, €5))
&

. AGL(g*(t,e5),q%(t + 1, ¢))
= 11rr(1) -

lim Lya,e5)ls=0 = lim
£—>0 e—0

s=0
. AGL(g%(1), g% (t + 1, &5))
+ lim
s=0 £—>0 € s=0
= DIL(g"(0), "t + 1) + lim Lysrcp|

s=0"
Hence,
0= DyL(q*(t —1),q%@)) + D1 L(q*(1), ¢“(t + 1))
= lim(E—tLqﬂ’(t,sx) + Lq"‘(t,ss) - Lq“(l,ss))|s:0
e—0
= hm(Lq“(t,ss) - At E—tLqu(t,es))|s:()-
e—0

This is equivalent to the limit of (15).
4. Discrete Hamilton’s mechanics
In this section, we use discrete variational equations to educe the discrete Hamilton’s

equations, which is equivalent to discrete Euler—Lagrange equations under the discrete
Legendre transform [12]. We also obtain the discrete Noether’s theorem.
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4.1. Discrete Hamilton’s equations

Let Z x R?" be a discrete vector bundle with coordinates {z, pl, P, ql, ..., q"}. Suppose
we are given a function H = H(t, E;p'(t), ¢'(t)). Then, we can construct the discrete 1-form

w=dpq'p' — H(t, E,p',q")dpt. summation

Setting a regular sublattice [0, co) with a coordinate s, a discrete variation of ), ezlw, At)p
is given by

@, Ao, (7)
teZ

where
®=dpq'(s,t)p'(s,t) — H(t, E;p' (s, 1), ¢' (s, 1))dpt, ®|i={00,—00) = 0.

Now we find conditions to make the value of (17) independent of s at s = 0. In other
words, we want to find conditions for vanishing the following expression:

Ay (@, A

teZ

= Z(iAngw +dpipa,®, A)p
s=0 teZ s=0

= Z(l‘Adea), A pls=0 +ia,0]5=0,1=00 — in,®)s=0,1=—cc
teZ

=Y (i, dp@, Ar)pls=o. (18)

teZ

Considering the perturbation p(t,s) = p'(t) + s or ¢'(¢,s) = ¢'(t) + s, respectively, we
obtain
indp® = (—Aq' + Hg,,i (t, E;p', ¢"))dpt, (19)
indp® = (Ap' + Hy(t,Ecp', q))dpt,

where
Hg,p (1, E;p'.q") == AGH (1, Ep'(1,5), ¢' (1) s=0
=H(@t Ep'(t,1),¢' (1) — H(t, E;p' (1), 4" (1)),
Hy(t, Ecp',q') = AH (1, Ep' (). 4" (1, 9))|s=o
= H(t, E;p'(1),q'(t. ) = H(t, Ep'(1). 4" (1)).
The vanishing of (19) is equivalent to the discrete Hamilton equations
Ap' = —Hy (1, Ep'.q"), Mg’ = Hp,p(t, Ecp'. ). (20)
If p' and ¢ satisfy equations (20), then the value of (18) vanishes.

If 5 is a continuous variable, then (20) is equivalent to the discrete Hamilton equations
given by Guo et al [12].

4.2. Discrete Legendre transformation

Now we show that the discrete Hamilton’s equations can also be derived from discrete Euler—
Lagrange equations and vice versa, using the discrete Legendre transformation, which is given
by Guo et al if s is continuous [12]:

H@t, Ep',q):=¢ Ep —L(t, 4", q", summation
If only ¢ or p’ or ¢’ depends on s respectively, then we obtain

Hy =—Lg, ¢' = Hg, i, E;p' =Ly, 21)

10



J. Phys. A: Math. Theor. 41 (2008) 085208 Z Xie and H Li

by equaling the coefficients of dps in equation
dpH(t, Eip'.q") =dp(§'E;p' — L(t.4". q").
From (15) and (21), we get
Ap'=—H,.
Combining with the third equation of (21), we induce the discrete Hamilton’s equation from

discrete Euler—lagrange equations.
From (20) and (21), we get
AE_ Ly = Lgi.
So we can also derive the discrete Euler—lagrange equations from discrete Hamilton’s
equations.
By computation, we find that the limit of the discrete Legendre transformation here is not

equivalent to the transformations given by Lall ef al [11]. Since their equations are educed
from their transformations, the discrete Hamilton’s equations here do not fit in their framework.

4.3. Discrete Noether’s theorem

It is well known that Noether’s theorem is one of the fundamental theorems in the differential
case. Now we consider this theorem and show that the result here also fits in the framework
developed by Marsden et al [10].

Now we consider the discrete 1-jet bundle of Z x R" = {t,¢q', ..., ¢"} and a function
L =L(tq", ¢"). Consider L(t, g' (¢, 5), ¢ (t)) a discrete variation of L. The L is said to admit
the discrete variation, if

L(t.q'(t,5),4'(1)) = L(t,q'(1), ¢ (1)).
From this condition, we have
0= A;L(t.q'(t.5), 4" ()]s=0
=L,
From [15], it is equivalent to
AE_ Ly« =0.
More precisely, we have
Theorem 4.1. Noether’s theorem in the discrete case. If the function L on J $ (Z x R") admits
the discrete variation
q'(s,t) 1 JH5(Z x R") — J)(Z x R"), s € R,
then the discrete Lagrangian equations corresponding to L have a first integral
1(¢'.¢") =E_ L.
Now we show how this theorem fits in the framework developed by Marsden and West

etal.
If s is continuous, then

0 = lim At E*tLq"'(t,ss)\l\.:g
e—0
= lim Lgiqes),oy — E— IM Lgigeq)),,
e—0 e—0

= DyL(t,q' (1), q'(t + 1)) = DoL(t, 4" (t — 1), 4" (1)).
It is nothing but the special case of their discrete Noether’s theorem [10].
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Future work. An important and uneasy problem is that how do the discrete solutions of
equations (15) and (20) behave with respect to the analytical solutions? In order to give a
satisfactory answer, we need to do much effort.
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